The importance of source configuration in quantifying footprints of regional atmospheric sulphur deposition.
نویسندگان
چکیده
An atmospheric transport-chemistry model is applied to investigate the effects of source configuration in simulating regional sulphur deposition footprints from elevated point sources. Dry and wet depositions of sulphur are calculated for each of the 69 largest point sources in the UK. Deposition contributions for each point source are calculated for 2003, as well as for a 2010 emissions scenario. The 2010 emissions scenario has been chosen to simulate the Gothenburg protocol emission scenario. Point source location is found to be a major driver of the dry/wet deposition ratio for each deposition footprint, with increased precipitation scavenging of SO(x) in hill areas resulting in a larger fraction of the emitted sulphur being deposited within the UK for sources located near these areas. This reduces exported transboundary pollution, but, associated with the occurrence of sensitive soils in hill areas, increases the domestic threat of soil acidification. The simulation of plume rise using individual stack parameters for each point source demonstrates a high sensitivity of SO(2) surface concentration to effective source height. This emphasises the importance of using site-specific information for each major stack, which is rarely included in regional atmospheric pollution models, due to the difficulty in obtaining the required input data. The simulations quantify how the fraction of emitted SO(x) exported from the UK increases with source magnitude, effective source height and easterly location. The modelled reduction in SO(x) emissions, between 2003 and 2010 resulted in a smaller fraction being exported, with the result that the reductions in SO(x) deposition to the UK are less than proportionate to the emission reduction. This non-linearity is associated with a relatively larger fraction of the SO(2) being converted to sulphate aerosol for the 2010 scenario, in the presence of ammonia. The effect results in less-than-proportional UK benefits of reducing in SO(2) emissions, together with greater-than-proportional benefits in reducing export of UK SO(2) emissions.
منابع مشابه
Application of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملPredictions of U.K. regulated power station contributions to regional air pollution and deposition: a model comparison exercise.
Contributions of the emissions from a U.K. regulated fossil-fuel power station to regional air pollution and deposition are estimated using four air quality modeling systems for the year 2003. The modeling systems vary in complexity and emphasis in the way they treat atmospheric and chemical processes, and include the Community Multiscale Air Quality (CMAQ) modeling system in its versions 4.6 a...
متن کاملSeasonal Study of Dust Deposition and Fine Particles (PM 2.5) in Iran Using MERRA-2 Data
The research results indicated that wet and dry dust deposition is a function of geographical characteristics. The seasonal wet and dry dust deposition and Fine Particles (PM 2.5) correlation in Iran with elevation, latitude and longitude results that the maximum correlation belongs to height, followed by latitude and longitude; meanwhile height and latitude are strongly and reversely correlate...
متن کاملEffects of atmospheric dust deposition on leaf chlorophyll fluorescence parameters of cow-tail shrubs (Smirnovia iranica) in the desert regions of Kashan, Iran
متن کامل
FINNISH METEOROLOGICAL INSTITUTE CONTRIBUTIONS No. 44 TEMPORAL AND REGIONAL PATTERNS OF ATMOSPHERIC COMPONENTS AFFECTING ACIDIFICATION IN FINLAND
Acid deposition is caused by the anthropogenic and natural emissions of sulphur dioxide and nitrogen oxides. The main sources of the anthropogenic emissions are fossil fuel consumption and industrial processes. In this study, the atmospheric compounds affecting the acidification in Finland have been investigated from different viewpoints. The geographical distribution, temporal trends and episo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Science of the total environment
دوره 408 4 شماره
صفحات -
تاریخ انتشار 2010